Math 2

Quiz Wednesday most likey)

Math II - Notes -.. Congruence and Triangles

Examplo 1 Naming Congruent Parts

Write a congruence statement for the triangles. Identify all pairs of congruent corresponding parts.

Solution

The diagram indicates that $\triangle D E F a \triangle B S T$ The congruent angles and sides are as follows.
 siue: $\overline{D E}=\overline{R S} \cdot \overline{E F} \approx \tilde{S T}: \overline{D F} \simeq \overline{B T}$

Examplo 2 Using Propertles of Congruent Figures
In the diagram DEFG \equiv KLMN.
a. Find the value of x.
b. Find the value of y.
$5 x+2=12$
$\frac{x}{5}=\frac{10}{5} \sqrt[x]{x}$

Solution

a. You know that $\overline{F G} \cong M \mathbb{N}$

So, $F G=12$

b. You know that $\angle E=\leq L$

So, $m \angle E=11^{\circ}$

THEOREM 4.3: THIRD ANGLES THEOREM

If two angles of one triangle are congruent to two angles of another trlangle, then the third angles aro also congruent.
If $\angle A \equiv \angle D$ and $\angle B=\angle E$, then $\angle C \cong \angle F$.

Examplo 3 Using the Third Angles Theorem
Find the value of x.

Solution

 $m \angle W=m \angle X \quad$ Third Angles Theorem $59^{\circ}=(4 x-5)^{\circ} \quad$ Substitute. $\frac{64}{4}=\frac{4 x}{4}$

$16=x$

Example 4 Determinigg Whether Thangles are Congruent
Decide whether the triangles are congruent. Justify your reasoning.

Solution

Examplo 2 Classifying Irlangles

Classify each trianglo. Be as specific as possible.
a. ABC has two acute angles, one right angle and two congruent sides.

b. $\triangle D E F$ has one obtuse antle and no congruent sides
Obtuse scalene Δ

Practice Problems

1. Would the following side lengths form a triangle? Why?
$3 . \frac{3.4 .57}{3+4} 7>5$
b. 5.7.11 $5+7>11 \quad 12>115$
c. $3,4,7$? $3+4>77=7 \times$
ext. 4. hm
2. Solve for x

3. Find all mussing angles

THEOREM 9.5: CONVERSE OF THE PYTHAGOREAN THEOREM It the square of the length of the longest side of a triangle 1 s equal to the sum of the squares of the length of the other two sides, then the ting

 triangle is a right triangle. If $c^{2}=a^{2}+b^{2}$, then $\triangle A B C$ is a rightiriangle.
Example 1 Verifying Right triangles

Tell whether the triangle at the right is a right triangle.

Solution

Let c represent the length of the longest side of the triangle. Check to see whether the side lengths satisfy the equation $c^{2}=a^{2}+b^{2}$.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& (8)^{2}+(24)^{2}=(10)^{2} \\
& 64+57 b=100 \\
& 650 \neq 100 \text { Not aright }
\end{aligned}
$$

Practice Problems
VERIFYING RIGHT TRIANGLES Tell whether the triangle is a right triangle.

$a^{2}+b^{2}=c^{2}$
$65^{2}+72^{2}=97^{2}$ $4225+5184=9409$
$9409=9409$

$a^{2}+b^{2}=c^{2}$
$20.8^{2}+10.5^{2}=23^{2}$
$432.64+110.25=529$
$542.897529 X$

at 6 Lesson 1: Angles \& Congruence Theorems

Name

Prior Angle Theorem The extensor angle is equal to the sum of the OppOSite interior $幺$ Ks
Angle \boldsymbol{A}, Angle B. Angle D

- Example

- Independent Practice 1

Angle Sum theorem - All three angles in a triangle $A D D$ up to equal
180
Angle A. Angle B. Angle $C=180$

- Example

- Independent Practice Solve tor x

1. $55+\cdots 7155+54+x+74=180^{2}$

$\underbrace{\frac{\operatorname{Pg} 1}{\# 2-11}}_{\# 1,3,8,12,14,16,17,20,21}$
$\frac{\operatorname{Pg} 2}{\# 96}, 10-15,28,30,34,37$

$$
\frac{\mathrm{Pg} \# 3}{\# 1,5,7,9,12,13,18,19,21,25,27}
$$

Created wit's

