Math

Quiz thursday

 toolkits a gluesticksalso, take out
2 sheets (investigation)
from yesterday.

Friday for
Project

parallel lines have the same slope.

GRAPH LACHLIN 10 ViRIfy YOUR ANSWER

E7円 $\quad \begin{aligned} & A(8,1), B(-2,7) \\ & C(-6,2), D(-1,-1)\end{aligned}$

Created with Doceri

GRAPHEACHLINE TO VERIFY YOUR ANSWER

E8

$$
\begin{aligned}
& A(5,3), B(8,0) \\
& C(-7,2), D(1,10)
\end{aligned}
$$

$m=\frac{8}{8}=\frac{1}{1}$
$m=\frac{-3}{3}=\frac{-1}{1}$
Perpendicular

EX円 $A(8,4), B(4,3)$
$C(4,-9), D(2,-1)$

$m=\frac{1}{4}$
$m=\frac{-8}{2}=\frac{-4}{1}$

Investigation: Exploring Properties of Plane Shapes

Coordinste methods can be used to reason about plane shapes. Given two points $\left(x_{1}, y_{1}\right)$ and $\left(y_{1}, y_{1}\right)$, e distance between them can be calculated and the midpoint con be located. These methoods are Useful to explore plane shapes and their properties. As you work on the following problems, bok for an answer to this question:

How can coordinates be used to reason athout plane shopes?

1. Triangle $\mathrm{A} C \mathrm{C}$ is an acute triangle with coordinates $\mathrm{A}(2,4), \mathrm{B}(8,8)$ and $\mathrm{C}(17,1)$.
a. Graph $\triangle A B C$ and calculate the perimeter of the trlangle.
b. In order to calculate the area of the triangle, the height is needed. Graph point $0(7,3)$ on side $A C$ and draw the line segment $B D$. The segment $B D$ represents the height from vertex B to the base side $A C$. Calculate the area of $\triangle A B C$ and compare your result with others. Resolve any differences.
2. In activity 1, the coordinates for point D were given so that $B D$ represented the height of the triangle. BD is also called the altitude of the triangle. Consider how the altitude might be determined if the point were not given
a. What is the relationship between the altitude and the base side? must be prepend icular.
b. Which of the following figures illustrates an altitude of the triangle?

c. Refer back to the triangle in activity 1 . Calculate the slope of side $A \mathrm{C}$ ind the stope of altitude PD . Record the slopes in reduced fraction form. Describe any relationship between the two slopes. $m \overline{A C}=\frac{-3}{15}=\frac{-1}{5} \quad m \overline{B D}=\frac{5}{1} \quad$ Slopes are 1

3. Right angles (angles measuring 90°) can be found in plane shapes such as right triangles, rectangles, and squares. Two tres are considered perpendicular when they intersect at a right angle. For each plane shape, identify a pair of perpendicular sides and compare their slopes. Describe the relationship between the slopes of perpendicular lines.

$m \overline{A B}=\frac{5}{2}$
$m \overline{A D}=\frac{-4}{10}=\frac{-2}{5}$
$\overline{A B} \perp \overline{A D}$

$m \overline{E G}=\frac{-8}{6}=\frac{-4}{3}$
$m \overline{G F}=$

$$
\overline{E G} \perp \overline{G F}
$$

$$
\begin{aligned}
& m \overline{H K}=\frac{-8}{4}=\frac{-2}{1} \\
& m \overline{K J}=\frac{4}{8}=\frac{1}{8} \\
& H K \perp \overline{K J}
\end{aligned}
$$

4. In activities $2 \$ 3$, you discovered that two intersecting lines are perpendicular if and oni $/$ if their slopes are opposite reciprocals. Below are three line segments. Use the fact that the slopes of perpendicular lines are opposite reciprocals to draw a line segment perpendicular to the glven lip segment. In each case, justify that the lines are perpendicular.

$m=\frac{3}{4} \perp-\frac{4}{3}$

$m=\frac{-3}{2} \perp \frac{2}{3}$

$m=\frac{1}{4} \perp-\frac{4}{1}$
5. Quadrilateral $K L M N$ is a rectangle with coordinates $K(-3,-3), L(0,9), M(4,8)$ and $N(?, ?)$.
a. Find the coordinates for point N . Explain how you determined the coordinates. opp sides are
b. Verify that quadrilateral KLMN is a rectangle by giving evidence related to its sides and Parallel (SaMe
angles.
c. What do you notice about the sides that are opposite of one another? What can be said about the sides if the slopes are the same?

6. Lengths and slopes of the sides of plane shapes can assist in identifying the specific type of shape. Coordinates of different triangles and quadrilaterals are given below in each case, carefully draw the figure on a coordinate grid and determine as precisely as possible the type of shape. You may want to refer to Shapes and Their Froperties handout for specific properties of different shapes.
a. $A(1,2) \quad B(2,5) \quad C(5,7) \quad D(4,4)$
b. $E(4,-1) \quad F(5,6) \quad G(1,3)$
c. $H(-3,2) \quad(-2,6) \quad J(2,7) \quad K(1,3)$
d. $L(2,2) \quad M(5,-2) \quad N(9,1) \quad P(6,5)$

	length	slope
$A B$	$=3.2$	$\frac{3}{1}$
$B C$	Opp sides \cong	
$C D$	$\sqrt{13}=3.6$	$\frac{2}{3}$
$D A$	$\sqrt{10}=3.2$	$\frac{-3}{-1}=\frac{3}{1}$
D	$\sqrt{13}=3.6$	$\frac{-2}{-3}=\frac{2}{3}$

b.

7. Coordinate points are often used to define the endpoints for a line segment. Linear equations can be used to define lines that extend in both directions without end. Examine the following finear equations.
A. $y=8+3 x$
B. $y=2 x+5$
C. $y=\frac{-1 r}{3}+7$
$y=-\frac{1}{3} x+7$
D. $y=\frac{6-1 y}{-2}$
E. $y=-3+51$
$y=-3+2 x$
a. Identify a pair of parallel lines and explain how you know they are parallel by exarninting the equations. $\mathrm{B}+\mathrm{D} \rightarrow$ same slope
b. Identity a pair of perpendicular lines and explain how you know they are perpendicular by examining the equations. $\mathrm{A} \& \mathrm{C} \rightarrow$ opp. Reciprocals
c. Write the equation of the line parallel to $y=3 y+12$ and passing through $(6,13) . \quad m=3$
d. Write the equation of the line perpendicular to $, \frac{2}{3}, 5$ and passing through $(4,9)$.

I
$\perp-\frac{3}{2}$

