Math 2
 take out
 norksinet
 from yesterday

$\triangle K 1 . M-$

$$
S F=\frac{\text { New }}{\text { old }} \quad S A S
$$

$$
\begin{aligned}
& \frac{10}{5}=2 \\
& \frac{8}{4}=2
\end{aligned}
$$

trigonometric ratios

Let $A B C$ be a right triangle The sine the cosine, and the tangent of acute / A are defined as follows.
$\sin A=\frac{\text { side opposite } \angle A}{\text { hypotenuse }}=$
$\cos A=$ side adjacent to $\angle A$
typotenuse
$\tan A-\frac{\text { side opposite } \angle A}{\text { side adjacent to } \angle A}=$

SOH CAHTOA

Example 1: Simple Application of Trig. Ratios

Find the sine, the cosine. and the tangent of $\angle P$.

Solution

The length of the hypotenuse is 17 .
The length of the side opposite $\angle P$ Is 15 .
The length of the side adjacent to $\angle P$ is 8 .

$\sin P=\frac{O}{H}=\frac{15}{17} . .88 \quad \cos P=\frac{A}{H}=\frac{8}{17}=.47 \quad \tan P=\frac{O}{A}=\frac{15}{-8}=1.88$
$\sin P=.88$
Now find the sine, cosine, and tangent of $\angle Q$.
$\sin a=\frac{O}{H}=\frac{8}{17}, 47 \quad \cos a=\frac{A}{H}=\frac{15}{17}+88 \quad \tan Q=\frac{0}{A}=\frac{8}{15}=.53$

Example 2: Using Trig. Ratios to Find Missing Side Lengths $\tan \theta_{\operatorname{Sin} \theta}^{\operatorname{Cos} \theta}=$
A. Find the length of $\overline{P R}$

B. Find the length of $\overline{X Y}$

$$
4.5 \cdot \sin 26=\frac{x}{4.5} \cdot 4.5
$$

$$
x=4.5 \cdot \sin 26
$$

$$
x=1.97
$$

$$
\begin{gathered}
x \cdot \cos 52=\frac{8.5}{x x} x \\
\frac{x \cos 52}{\cos 52}=\frac{8.5}{\cos 52} \\
x=\frac{8.5}{\cos 52} \\
x=13.81
\end{gathered}
$$

* Make sure mode is in degrees

Example 3: Using The Inverse of Trig Functions

A. Find $m \angle A$
$\tan \theta=\frac{21}{20}$
$\theta=\tan ^{-1}\left(\frac{21}{20}\right)$
$\theta=46.4^{\circ}$
B. Find $m \angle N$
$\sin \theta=\frac{4}{13.6}$
$\theta=\sin ^{-1}\left(\frac{4}{13.6}\right)$

$\theta=17.1^{\circ}$

Practice Problems: The values of the triangles below are completely determined. Find the missing values.
1.

$\cos 51=\frac{3}{x^{3}} \cdot \tan 51=\frac{d}{3} \cdot 3$

$$
x=\frac{3}{\cos 51} \quad d=3 \tan 51
$$

$$
e x=4.8
$$

2.

Right Δ trig Wrksht
1.

$\cos \theta=\frac{12}{13}$
$\theta=\cos ^{-1}\left(\frac{12}{13}\right)$
$\theta=22.6^{\circ}$
\#S.
0.7

$$
\theta=\tan ^{-1}\left(\frac{7.7}{14}\right) \theta=28.8
$$

SOHCAHTOA mode = degrees

$x \cdot \cos 37=\frac{11}{x} \cdot x$
11.

$\frac{x \cos 37}{\cos 37}=\frac{11}{\cos 37}$
$5 \cdot \tan 50.1=\frac{x}{5} \cdot g$

$$
x=5 \tan 50.1
$$

$x=\frac{11}{\cos 37}$

$$
x=5.97
$$

$$
x=13.8
$$

