```
Mouth a
-Test (Final)
Day 2: Thurs. } county
Day 2: Friday

June 6th (Tuesday) > State
L>PM w/ Sluder
                                                               Created with Doceric
```

Review Packet - Math II

Quadratic Formula Complex #5

L> * find x-intercepts/solutions

for ANY Quadratic.

$$X = -b \pm \sqrt{b^2 - 4ac}$$

standard form = Ox2+bx+C

Complex #: imaginary #

$$\sqrt{-1} = i$$

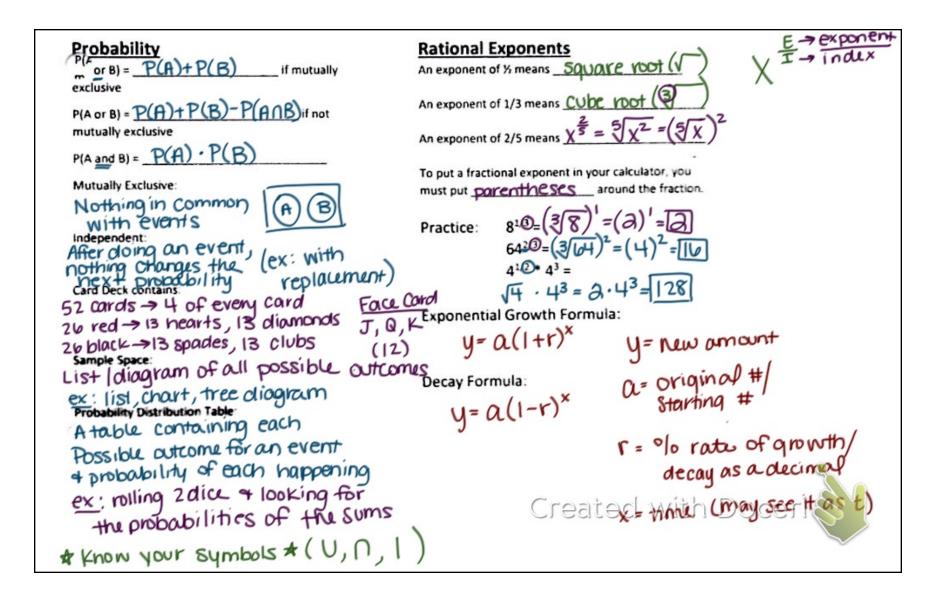
ex: Simplify V-40

Name: ____

Inverse Variation:

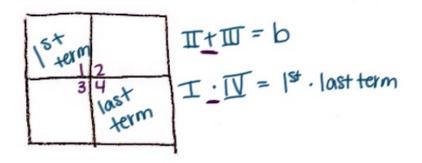
Toverse formula: $y = \frac{k}{x}$, k is the Constant of Proportionality

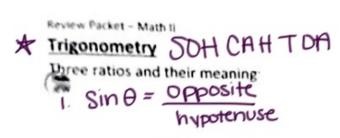
Example: The force, F, needed to break a board varies inversely with the length, L, of the board. If it takes 24 pounds of pressure to break a board 2 feet long, how many pounds of pressure would it take to break a board that is 5 feet long?


that is 5 feet long?

$$y = \frac{k}{x} \qquad F = \frac{48}{5}$$

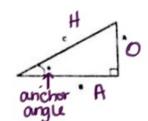
$$F = \frac{k}{5}$$

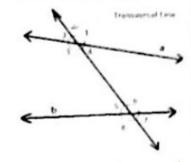

$$F = \frac{48}{5}$$



Solid= 2,4 Transformations Inequalities 1 Rotation - Spin dotted = >, 4 3. Shade above or below How to graph an inequality: ex 190° rotation CCW 1. graph points 2. solid or dashed line Example: A rectangle is 6 cm longer than it is wide. Find the possible dimensions if the area of the rectangle is more than 216 square centimeters. Write the solution as an equation and graph it. h > leff/right, K > Up/down across any line or axis. All points need to be equidistant Quadratics from the reflection line. Forms of a Forms of a Ovadratic multiply each coordinate 1. Standard -> y-int = C-value by scale factor of S ax2+bx+C original image AABC a Factored Form -> X-int : Set factors $\frac{1}{k}(x-a)(x-p)$ equal to 09 transformed image $\Delta A'B'C'$ Scale Foctor solve SF= New = Big small 3. Vertex form → Vertex: (h, K) a(x-h)²+K opp same exj 2(x-3)²+5 Created with Doceria SF = Perim SF Area SF = (Orig SF)2 vertex:(3,5)

Factoring/Solving a Quadratic



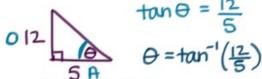

2 Cos 0 = Adjacent hypotenuse

3 tan 0 = Opposite adjacent

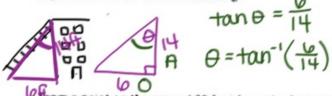
Label the triangle's sides as opposite, adjacent, and hypotenuse Name:

Angle relationships formed by parallel lines with a transversal:

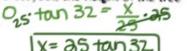
List each pair of congruent angles shown in the diagram, assuming that lines a and b are parallel and identify their relationship (type of angle)


Vertical 4's → = Corresponding 4s → = Alternate interior → = Alternate exterior → =

Same Side interior -> Sum 180° Same Side exterior > Sum 180°

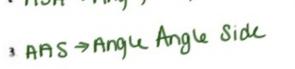

Linear Pairs -> Sum 180°

Created with Doceri

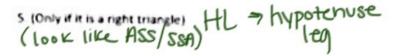

gonometry * mode > degrees * * Use inverse trig function (anti) *

Example: A ladder leans against a building. The foot of the ladder is 6 feet from the building. The ladder reaches a height of 14 feet on the building. What is the angle of the ladder with the building?

From a point on the ground 25 feet from the foot of a tree, the angle of elevation of the top of the tree is 328 Find to the nearest foot, the height of the tree

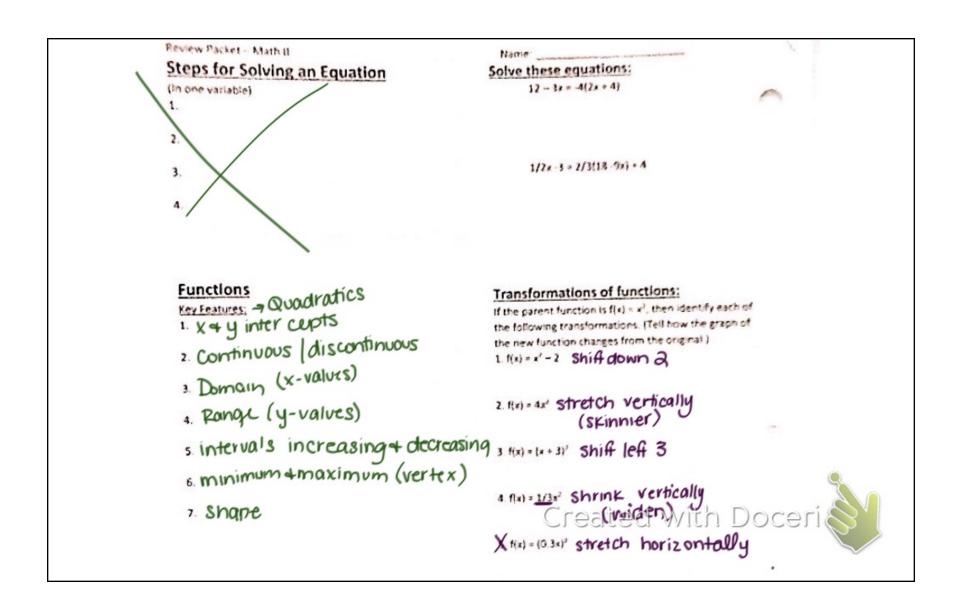


Triangle Congruence


The conditions which prove two triangles are congruent:

: SAS - Side Angle Side

: ASA - Angle, Side, Angle



1 SSS > Side Side Side Side

Similarity & scale Factors & 1. AA → Angle Angle (≅)

3. SSS - Side Angle Side (Same SF)

Types of Functions and a graph of each:

- 1. Linear line
- 2. Quadratic → parabola
 y=0x2+bx+c

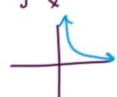
y=mx+b

Vocabulary. Domain

3. Square Root

4. Absolute Value

Piecewise


Range

Cube root

5. Inverse Variation

Discrete

Discontinuous

Continuous

Created with Doceri