

Completing the

MHAS

This method allows us to use the square root method to solve quadratics that cannot be rewritten as $\alpha x^2 + C$

Rearrange your equation so it looks like:

$$x^2 + bx + \square = C + \square$$

If a ≠ 1, divide every term by a.

In the squares, write $\frac{\left(\frac{b}{2}\right)^2}{2}$

Now, you can rewrite the left side as $(x \pm \frac{b}{2})^2$

Take the square root of each side. Don't forget the

Solve for x.

EXAMPLE:
Solve by complete

Solve by completing the square.

$$(x-b)^2 = 31$$

 $(x-b)^2 = 31$
 $(x-b)^2 - 31 = 0$

$$(v-3)^{2} = 4$$

$$(v-3)^2-4=0$$

$$a. n^2 + 10n \sqrt{120}$$

$$n^2 + 10n + 25 = -11 + 25$$

$$(n+5)^2 = (+)$$

$$(n+5)^2 - 14 = 0$$

$$a^2 - 10a + |as| = 11 + |as|$$

$$(a-5)^2-3b=0$$

10.
$$ax^2 - 8x + 0 = 0$$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0 + 0$
 $ax^2 - 8x + 0 = -0$
 $ax^2 - 8x + 0 = 0$
 $ax^2 - 8x +$